Blog

Only showing posts tagged with 'UoM' Show all blog posts

Work Experience Stories: From the Nuffield Foundation

by YPU Admin on October 1, 2015, Comments. Tags: Nuffield, placement, Research, science, STEM, UoM, and Work Experience

Introduction

Hi, my name is Jen Young and I am a 17 year old student studying A-level biology, chemistry, geography and maths and always knew my future lay in the field of science. Therefore, when I heard of an opportunity to undertake a research project through Nuffield Research Placements, I jumped at the opportunity. I was thrilled to find out I was starting my research placement at Manchester University’s Dalton Cumbrian Facility on the 20th of July.


I applied because I was thinking of studying biology or biochemistry at university so when this opportunity came
up; I had to grab it with both hands as it would give me valuable experience in a research-based environment. This type of career appealed to me and I felt it was appropriate to gain first-hand experience of the work they do there and the different projects going on. Finally, it would allow me to learn some practical skills, including how to use some of the lab equipment which would surely aid my UCAS application and show that I have valuable experience in my subject area.

 

In Depth

My project focused on determining how gamma radiation affected the digestion of feedstock, in this case a poor quality grass from the hills of Cumbria called scrow, and how the pretreatment may affect the yield of biogas from set amounts of grass silage and slurry. In order to identify an appropriate method, several preliminary trials were carried out to determine the best volume of inoculum and the mass of grass silage per 50ml vial. A few other trials were undergone to determine grinding time and “mashability” so the investigation was quite thorough.


This project was requested by Riever Renewables a major anaerobic digester development company which gave the research a real sense of importance and it showed that it was relevant to current science. The research could even be used for a future PhD or paper which could prove to be beneficial to renewable energy production in the UK.


My previous knowledge about the affect of radiation pretreatment on feedstock was limited as it hadn't really
been done before. The only familiarity I had with the project was the process of anaerobic digestion but even then I have gained a bounty of knowledge in the subject. With access to the ideas of the PhD students I can confidently say I know exactly how they work and after my research placement I can say that I am able to efficiently and accurately use equipment.


The experience far exceeded my expectations as I was trusted to use extremely expensive equipment and spent a
lot of my time working in a laboratory environment without supervision, which allowed me to gain plenty of experience while also being independent and figuring things out for myself. It was amazing to undertake scientific tasks while expanding my knowledge of the area. It really helped me understand what it is like to be a research scientist and it has given me an insight into the world of research. The experience has made me even more determined to apply for a place on a biological science course at university, mainly due to the confidence this placement gave me and the impression it gave me of a career as a research scientist.


On my placement, I had two supervisors, Andy and Laura. They assisted me throughout my project and gave me an insight into not only their work but their lives as researchers. Laura would always make sure that I had enough research to carry out so I was never bored and I understood exactly what the project entailed. Andy showed me the ropes and helped me throughout, showing me how to use the equipment, what research had been carried out so far and what his role was. It was a great opportunity to ask questions and learn about their field while also getting to know them as a person.


The experience taught me to use several different types of equipment safely and efficiently and how to draw
conclusions from data collected. My practical skills developed immensely and I now feel more confident when using the equipment having learned how to use much more advanced equipment during my placement than I would be expected to use at school.


On my project, I also had to write a report. This enabled me to work on my literacy skills and made me further understand the scientific concepts by having to explain it to others. Having never written a scientific report I was worried, especially as it was potentially being used as part of a paper but it turned out quite well and I was able to write a detailed report of my method and an analysis of my results drawing my own conclusions. Now I feel much more confident. This skill will prove to be very useful when I go to university or even in year 13 when I write essay answers.


This experience has made me realise that I would love to pursue a career in research specifically in human biology and thanks to their advice I know exactly what path I want to take. Even if this path doesn't work out I know many other ways to work in research and after my experience I can say that I would enjoy working there and I find it really interesting.

Going Further 

I encourage anyone thinking about a career in a STEM subject to apply for a Nuffield Research Placement. The skills are invaluable and simply not covered in school. It will benefit you greatly, especially when thinking of going to university. It is a great way to spend some of your summer holidays and it is an experience that not many people get this early in life. The opportunity will require work and perseverance but it is entirely worth it, not only through teaching you new skills but also through providing you with confidence in your abilities.

Find out more:

Nuffield Research Placement: http://www.nuffieldfoundation.org/nuffield-research-placements


 

Making robot airplanes

Introduction

My name is Bilal Kaddouh and I am currently in the third year of my PhD at the University of Manchester. I have completed my BEng (Hons) with distinction in Electrical and Computer Engineering at the American University of Beirut in 2010, and then decided to concentrate on Robotics and Control, hence I did a MSc (Hons) in Robotics Engineering at King’s College London where I graduated with distinction in 2011. I am currently a Doctorate Candidate at the University of Manchester in the field of Aerospace Engineering. My main research area is concerned with Unmanned Aerial Vehicles (UAVs), in particular system and mission management, resources allocation, collaborative control and efficient planning.

I have worked for a year with Cummins Power Generation as a project application engineer which gave me an insight to real life work problems as well as a practical experience in applying my engineering knowledge to solve those problems. I was also responsible for delivering technical training to distributors all over Europe and the Middle East, this gave me a practical experience in teaching and conveying knowledge to students. 

Through my research I aim to design a method for efficiently managing multi UAV resources in the civil airspace under temporal and dynamic constraints. In simple words, given a set of required tasks that needs to be completed within a certain time window, I am creating a system of rules which allows a group of UAVs to decide what each UAV is going to be doing at each point in time so that all the required tasks are completed in the most efficient way while the UAVs are flying in a safe condition all the time.


In Depth

What is a UAV?

UAVs are airplanes without a pilot onboard. Their computational capabilities vary from simple remotely piloted airplanes to highly sophisticated autonomous flying platforms. They are essentially flying robots, and the aim of my research is to let the robots decide what to do to efficiently achieve various goals. UAVs can carry different sensors onboard, like cameras, infrared sensors, CO2 sensors, laser scanners, radars and so on. Due to current advancement in electronics UAVs possess an increasing level of computational power onboard for performing real time processing and decision making.

Why multiple UAVs?

UAVs are being used in various civilian applications such as remote sensing, aerial photography, crop health monitoring, emergency response, firefighting, atmospheric studies and many more. Many applications in the civilian world involve multiple teams working on the ground together in real time to accomplish a certain mission such as disaster management and relief, large event management security protection and crowd control, emergency services, firefighting ... A Multi User Multi UAV system is important for real time data gathering, in particular for live aerial imagery. When talking about a multi user application we are not considering single task multi users we are focusing on multi task multi users which gives users different task options to choose from.

Currently all commercial UAV operations models are built around one user flying one UAV. People are now slowly introducing UAVs into various applications for the added value it brings to any operation. Current trend of research has been focusing on moving from multiple operators managing one UAV to one operator managing many UAVs and therefore we find contributions in the operator situational awareness systems, in task allocation systems and in real time data processing. We will probably get to a point where UAVs are allowed to fly autonomous missions under certain rules and regulations enforced by the appropriate aviation authority. When we get to that stage, systems allowing one user to control multiple UAVs would be desirable.

What is the problem?

As a UAV operator, there are a lot of decisions that need to be made in terms of what sensors to install and how to plan and execute the required mission safely and efficiently. The problem gets complicated when multiple versatile UAVs are to be used especially when deciding on which ones to use and what factors to consider and so on. Therefore, the workload faced by the operator is overwhelming. With the flexibility and diversity available in a multi UAV system, it becomes impossible for an operator to take all those decisions in a timely manner and in an efficient way. Computerized automatic resource management systems are designed to answer those questions.

What is my approach?

The future

Technology is developing fast and many advancements are not yet accessible to the public. Effective management systems of multiple UAVs will allow this cutting-edge technology to be utilized by everyone. Instead of having to own and learn how to control a UAV yourself and having limited resources on your particular machine, soon you will be able to benefit from the numerous services of a UAV simply by using an app on your mobile phone or by visiting a website. The key for succeeding in a UAV resource sharing system is an efficient resource allocation system, and that’s where my research comes in.


Going Further

For more information about UoM UAV Research Group: http://uavs.mace.manchester.ac.uk/

For more information about aerospace system group: http://www.mace.manchester.ac.uk/our-research/research-themes/aerospace-engineering/specialisms/aerospace-systems/

For more information about studying aerospace: http://www.mace.manchester.ac.uk/study/undergraduate/courses/aerospace-engineering/meng-aerospace-engineering-4years/

Some ted talks about UAVs:

https://www.ted.com/talks/andreas_raptopoulos_no_roads_there_s_a_drone_for_that

http://www.ted.com/talks/raffaello_d_andrea_the_astounding_athletic_power_of_quadcopters?language=en

A video indicating the simplicity and important usages of UAVs:

https://www.youtube.com/watch?v=E9n0TRpcIw8