by YPU Admin on May 28, 2015,
. Tags:
ambassador, apprenticeships, astronomy, computerscience, Engineering, mathematics, nuclearphysics, particlephysics, Physics, radiation, Research, science, spacescience, STEM, and STFC
Introduction
My name is Marcello
and I earned my PhD in particle physics at the University of Manchester, in
2013. Since then, I have been working as a researcher for the Science and
Technology Facilities Council (STFC).

STFC is a UK government body that carries out civil research
in science and engineering, and funds UK research in areas including particle
physics, nuclear physics, space science and astronomy.
I work in the technology department and I am
involved in projects dealing with the building of instrumentation for
experiments in nuclear physics. This type of instrumentation is not available
commercially because it has very particular requirements. Hence, STFC employs dedicated
teams of physicists and engineers to build this type of equipment. And I am one
of them!
My
experience.
I decided to continue my education after the age of 18
and so enrolled in a bachelor’s degree of physics at the University of
Manchester. This decision opened up many opportunities in my life.
I gained an objective view of natural phenomena and increased
my employability.
Science and engineering have the power to change the
world we live in. These subjects produce the most amazing technology and fuel
the economy of many countries. For this reason, the analytical thinking of a
physicist is highly valued in the job market.
As a student, I did not always find physics easy to
understand and did not like all of its different branches equally. My favorite topic
is the interaction of radiation with matter, so I decided to specialize in this
area for my masters and PhD.

An education in physics gave me the opportunity to study
and work in an environment which is professional, multicultural and at the
forefront of human knowledge.
From the neighborhood I grew up in, I found myself
involved in international projects investigating important questions about our
existence. I spent time in laboratories in other countries to exchange
information about my work. During this time, I also made strong friendships and
discovered new places.
The knowledge I gained in high-school in mathematics,
physics and computer science, has been beneficial to my career.
To summarise, I wanted to include some figures about
salaries of researches in the initial and middle stages of their careers:
-
PhD student (22-25
years old): about £12,000 per year.
-
Post-doc researcher
(25-35 years old): from £28,000 to £35,000 per year.
-
Academic staff or
senior researcher (35-45 years old): from £35,000 to £45,000.
Salaries will increase even further for managerial
positions within Universities or Research Institutes and are generally higher
in the private sector.
Further details
Apprenticeships are really good opportunities to boost
your experience in science and engineering and I’ve found that it is easier to
find apprenticeships in engineering than in science. Engineering or IT
apprenticeships are valuable opportunities for aspiring scientists.
https://www.stfc.ac.uk/1485.aspx
Some organizations that help people to enter top
Universities.
http://www.socialmobility.org.uk/
Get involved and become a STEM Ambassador.
http://www.stemnet.org.uk/
by YPU Admin on May 14, 2015,
. Tags:
aerospace engineering, collaborative control, computer engineering, Cummins Power Generation, efficient planning, electrical engineering, Engineering, EPS, MACE, manchester, mission management, postgrad, Research, resources allocation, robotics engineering, system management, UAVs, and UoM
Introduction

My name is Bilal Kaddouh and I am currently in the third year of my PhD at the University of Manchester. I have completed my BEng (Hons) with distinction in Electrical and Computer Engineering at the American University of Beirut in 2010, and then decided to concentrate on Robotics and Control, hence I did a MSc (Hons) in Robotics Engineering at King’s College London where I graduated with distinction in 2011. I am currently a Doctorate Candidate at the University of Manchester in the field of Aerospace Engineering. My main research area is concerned with Unmanned Aerial Vehicles (UAVs), in particular system and mission management, resources allocation, collaborative control and efficient planning.
I have worked for a year with Cummins Power
Generation as a project application engineer which gave me an insight to real
life work problems as well as a practical experience in applying my engineering
knowledge to solve those problems. I was also responsible for delivering
technical training to distributors all over Europe and the Middle East, this
gave me a practical experience in teaching and conveying knowledge to
students.
Through my research I aim to design a method for efficiently managing multi UAV resources in the civil airspace under temporal and dynamic constraints. In simple words, given a set of required tasks that needs to be completed within a certain time window, I am creating a system of rules which allows a group of UAVs to decide what each UAV is going to be doing at each point in time so that all the required tasks are completed in the most efficient way while the UAVs are flying in a safe condition all the time.

In Depth
What is a UAV?
UAVs are airplanes without a pilot onboard. Their computational capabilities vary from simple remotely piloted airplanes to highly sophisticated autonomous flying platforms. They are essentially flying robots, and the aim of my research is to let the robots decide what to do to efficiently achieve various goals. UAVs can carry different sensors onboard, like cameras, infrared sensors, CO2 sensors, laser scanners, radars and so on. Due to current advancement in electronics UAVs possess an increasing level of computational power onboard for performing real time processing and decision making.

Why multiple UAVs?
UAVs are being used in various civilian
applications such as remote sensing, aerial photography, crop health
monitoring, emergency response, firefighting, atmospheric studies and many
more. Many applications in the civilian world involve multiple teams working on
the ground together in real time to accomplish a certain mission such as
disaster management and relief, large event management security protection and
crowd control, emergency services, firefighting ... A Multi User Multi UAV
system is important for real time data gathering, in particular for live aerial
imagery. When talking about a multi user application we are not considering
single task multi users we are focusing on multi task multi users which gives
users different task options to choose from.
Currently all commercial UAV operations models are built around one user flying one UAV. People are now slowly introducing UAVs into various applications for the added value it brings to any operation. Current trend of research has been focusing on moving from multiple operators managing one UAV to one operator managing many UAVs and therefore we find contributions in the operator situational awareness systems, in task allocation systems and in real time data processing. We will probably get to a point where UAVs are allowed to fly autonomous missions under certain rules and regulations enforced by the appropriate aviation authority. When we get to that stage, systems allowing one user to control multiple UAVs would be desirable.

What is the problem?
As a UAV operator, there are a lot of decisions that need to be made in terms of what sensors to install and how to plan and execute the required mission safely and efficiently. The problem gets complicated when multiple versatile UAVs are to be used especially when deciding on which ones to use and what factors to consider and so on. Therefore, the workload faced by the operator is overwhelming. With the flexibility and diversity available in a multi UAV system, it becomes impossible for an operator to take all those decisions in a timely manner and in an efficient way. Computerized automatic resource management systems are designed to answer those questions.
What is my approach?

The future
Technology is developing fast and many advancements are not yet accessible to the public. Effective management systems of multiple UAVs will allow this cutting-edge technology to be utilized by everyone. Instead of having to own and learn how to control a UAV yourself and having limited resources on your particular machine, soon you will be able to benefit from the numerous services of a UAV simply by using an app on your mobile phone or by visiting a website. The key for succeeding in a UAV resource sharing system is an efficient resource allocation system, and that’s where my research comes in.

Going Further
For more information about UoM UAV Research
Group: http://uavs.mace.manchester.ac.uk/
For more information about aerospace system
group: http://www.mace.manchester.ac.uk/our-research/research-themes/aerospace-engineering/specialisms/aerospace-systems/
For more information about studying
aerospace: http://www.mace.manchester.ac.uk/study/undergraduate/courses/aerospace-engineering/meng-aerospace-engineering-4years/
Some ted talks about UAVs:
https://www.ted.com/talks/andreas_raptopoulos_no_roads_there_s_a_drone_for_that
http://www.ted.com/talks/raffaello_d_andrea_the_astounding_athletic_power_of_quadcopters?language=en
A video indicating the simplicity and
important usages of UAVs:
https://www.youtube.com/watch?v=E9n0TRpcIw8
by YPU Blog on April 16, 2015,
. Tags:
aerospace, atoms, binary, civil, collision, Curie, damage, dynamics, energy, Engineering, EPS, fission, fluid, fusion, irradiation, manchester, materials, mathematics, mechanical, mechanics, modelling, molecular, neutron, nuclear, plasma, postgrad, power, pyshcis, reactor, Research, Rutherford, simulation, and sun
Introduction
Hello! My name is Asad and I’m a
PhD student at the School of Mechanical, Aerospace and Civil Engineering at the
University of Manchester. Within my PhD, I work in the relatively recent field
of nuclear fusion. More specifically, I look at the effects of plasma damage
and neutron irradiation (both known phenomenon that occur within nuclear
fusion) on materials that could be used to build a potential fusion reactor.
A little bit about my background
first. Before I embarked on my PhD, I completed a Master of Engineering (MEng)
in Mechanical Engineering with a minor focus on Nuclear Engineering. I also did
some part time study in mathematics and research projects within fluid
mechanics. Of the latter, a noteworthy one is that I constructed a mathematical
model of the acoustics of a banjo!

In Depth
Science has always intrigued
mankind. Some of the foremost questions we have been obsessed with are the
simple ones:
·
“Where did we come from?”
·
“Why are we here?”
·
“What do we do?”
No matter who you ask, you will
realise that we still don’t really know the answers to these; whether we look
for philosophical reasoning or scientific. We search high and low for answers.
Our universe is at the centre of such research. And at the centre of our
universe: the sun.
The sun can be considered a giant
ball of energy. The manner in which this energy is generated is referred to as
nuclear fusion. As the human species observed this, we felt the urge to exploit
the process to aid our need for energy, in order to survive on a world where
resources are rapidly depleting.
What exactly is nuclear fusion?
The answer is a result of work done by pioneering scientists such as Ernest
Rutherford, Pierre Curie and Marie Curie. We find that certain atoms of
elements undergo interesting transitions. We have been able to exploit these,
such as nuclear fission which is currently a dominant process to generate
electricity. Within fission, we find that under the right conditions, some of
the atoms will split and become smaller releasing energy in the process. Fusion
is the opposite; some atoms combine and through the process release energy. It
has been found that the energy released through fusion could potentially be
more sustainable, cleaner, and less fraught with the risks associated with the
energy generated through fission.
Thus we are now engaged in a
global technological race to be able to achieve the right conditions for fusion
on earth. Thus far we have managed to recreate the conditions. However, we
still haven’t managed to be able to maintain these for long enough, nor have we
been able to extract power from it. We have some ideas on how to achieve both.
One of the questions however is, do we have the materials to be able to do so?

This is where people like me come
in. Thus far I have spoken about how this is a relatively new process mingled
with a plethora of difficulties. Therefore, it will not be surprising when I
say that we don’t exactly have the appropriate facilities to be able to
entirely comprehend the extreme effects taking place. So how do we go about
solving the problem? Some people try and use proxies, alternative approaches
that in some way mimic certain effects we expect. Others try to use
computational techniques and our understanding of physics to paint a picture.
I’m involved in the latter. I use modelling and simulation to try and deduce what
we expect. It isn’t as simple as pushing a button however. One needs to be
aware of a lot of inter-related pieces of physics. Sometimes, we also find that
we don’t have the computational power to actually be able to process all of these
(surprising isn’t it given the progress in the field of IT). Sometimes my job is therefore to see which
processes are negligible. At other times, it is to check and draw conclusions
from the results of my simulations. To name a few of the techniques I use; I
use solvers for the neutron transport equation, binary collision approximation
and molecular dynamics. The last considers how atoms are likely to behave. This
generates some interesting perceptions of important chemical and atomic
processes.
I’ll stop here. I’ll end on a
note that the human race is currently engaged in very exciting things. But to
see this realised; we need young, ambitious and creative minds that are keen to
learn as well as try new things.
Going Further
If you want any more information, please feel free to contact me at: asad.hussain@postgrad.manchester.ac.uk .
To find out more about the chemical and atomic processes generated in molecular dynamics: http://lammps.sandia.gov/movies.html
A more comprehensive yet elementary guide on nuclear physics can be found at (http://hyperphysics.phy-astr.gsu.edu/hbase/nuccon.html)
Here are also
some web links pertinent to what I have written:
Culham Center for Fusion Energy: http://www.ccfe.ac.uk/introduction.aspx
Nuclear Energy Agency: http://www.oecd-nea.org/workareas/
Fusion Center for Doctoral
Training: http://www.york.ac.uk/fusion-cdt/
by YPU Admin on February 19, 2015,
. Tags:
accelerator, Chernobyl, Engineering, graphite, manchester, mechanical, nuclear, particle, Physics, radioactivity, Research, synchrotron, and waste
Introduction
My name is Robert Worth and I am
currently part way through a PhD in Nuclear Engineering with the Nuclear
Graphite Research Group at the University of Manchester – how did I get here?
Almost by accident. It was during my A Level study in Physics that I first came
across the phenomenon of radioactivity, which I thought was a bizarre and
exciting process that I had not encountered before, and I needed to know more! This
eventually led me to my degree in Mechanical (Nuclear) Engineering at the
University of Manchester, which was very enlightening and encompassed many
aspects of both mechanical and nuclear engineering. It was during my degree
that I stumbled across an email containing upcoming PhD research projects – did
I know what a PhD involved? Nope, not really. Did I want to do one? I wasn’t
sure. I’m glad I applied, however, as it turned out that this is the sort of
work I’d wanted to do all along, I just hadn’t realised it. You are no longer
just absorbing information from others – I am also now doing the finding out, and
helping answer questions that nobody in the world yet has answers to!
I’ve been very lucky with this
PhD project, and have been encouraged to attend many prominent events and
conferences around the country, talking with and working alongside some of the
most inspiring people and minds in the country. I’ve been fortunate enough to
travel further afield too, as far as Lithuania, where we stood on the top of a
nuclear reactor core of the same basic design as the famed Chernobyl, and even
over to the United States, to visit a research group at Idaho State University
and to help on an experiment at a synchrotron particle accelerator in
California.

My specific research project is
on thermal treatment of irradiated
graphite waste. It turns out that there is an awful lot of it (around
96,000 tonnes) in our small country, the UK. So far, there are good ideas about
how we might deal with this large volume of radioactive waste, and the Nuclear
Decommissioning Authority (NDA) have plans to bury most of it in a future
geological disposal facility, a large controlled facility far underground that
could house and contain all of our radioactive waste for thousands of years to
come. Since a location for this facility is yet to be found, and it is yet to
be built, you could argue that a disposal route is not set in stone. Which is
where treatment comes in – can we do something else with the graphite waste to reduce
the hazard, instead of burying it, which could potentially save money and may
leave valuable space in the repository open for other more hazardous wastes? This
is a point of controversy amongst the nuclear waste research community!
In Depth
What is graphite and how is it used?
Graphite is a very stable hexagonal
formation of carbon atoms, that can be found naturally but is also artificially
manufactured to very high purities, at great expense! This involves many
different processes to reach the final product including heating to around 3000oC
for a number of days. It is essentially many planes of the material ‘graphene’
all layered up on top of each other, and is found in pencils; the ‘lead’ in
your pencil is actually graphite, and it is these layers of carbon atoms sliding
relatively easily over each other that allows you to write and draw quite
easily.
Graphite is used in many nuclear reactors in the
UK in the shape of enormous blocks, which can be over a metre in height, all
stacked on top of each other and arranged into a large reactor core. Its purpose
is to slow the neutrons in the core down, by acting as a physical barrier for
the neutrons to bounce off, a little like billiard balls, so that they will
react more easily with the nuclear fuel, producing energy for us to power our
homes.
Why is it radioactive?
Carbon has been selected as a
fairly ‘neutron transparent’ material so that neutrons will bounce off and
scatter away from the carbon atoms instead of being absorbed. This does not
happen every time, however, and on occasion a neutron will be absorbed into the
carbon atom, making the nucleus of the atom heavier and larger than it was
previously. This can make the atom become unstable, as it can no longer
physically sustain itself in a stable state, and so the atom will ‘decay’ by releasing
some energy – in this instance, a radioactive carbon-14 atom will spit out an
electron from the atom and transmute into nitrogen-14, which is a stable atom.
Voila! This is the process of radioactive decay.

What do I actually do?
I spend a lot of time working in
a laboratory with radioactive samples, taken from a nuclear reactor, wearing a white
lab coat, goggles, layers of gloves, and working with tongs behind special
shielding or in a glove box, like Homer Simpson. I also wear a dosimeter to
record the amount of radiation I have received from the samples, so that I know
I am well below safe levels for working. I then take these samples and place
them in a specially designed tube furnace, and very carefully oxidise them
using a gas flow of 1% oxygen to try and remove a good fraction of the surface
radioactivity as a gas. The radioactive portion of this gas is then trapped and
collected in a ‘bubbler system’, where the gas is forced to bubble up through a
clever fluid, before it is taken away for analysis to determine how much
radioactivity has been successfully removed. I can then use this data to make a
reasoned judgment of how I might improve the process, by adjusting the
temperature, for instance.
Going Further
Are you interested in Science, Technology and Engineering?
Would you like to meet representatives from some of the biggest
companies in the UK?
Then come along to The University of
Manchester on Wednesday 23rd
October and find out more!
During the event, you will get the
opportunity to visit information stands from companies within the technology, engineering, manufacturing,
healthcare, construction, transport and media sectors.
Companies such as Samsung, JVC, BBC Academy, Network Rail, the NHS, 2Dtech and many more will
be at the exhibition.
You will also have
the opportunity to hear from a range of speakers on subjects such as ‘Choosing What and Where to Study’, ‘Student Life’ and ‘So you think you know the Sciences?’ Current students and staff from academic
schools will be available throughout the event to answer any questions you have
about university.
Time: 3pm-6pm
Location: The Great Hall, Sackville Street Building, The
North Campus, The University of Manchester
Please register completing a registration survey. If you have any questions, please email schoolsandcolleges@manchester.ac.uk.
The registration deadline is Friday
11th October at 5pm.
We look forward to seeing you at the
event!
![]()
![]()
![]()
