Blog

Only showing posts tagged with 'Fuel Cells' Show all blog posts

The Search for Alternative Energy Sources

by YPU Admin on March 16, 2017, Comments. Tags: chemical engineering, energy, Fuel Cells, PhD, Research, STEM, and UoM

Introduction

My name is Romeo Gonzalez and I am a 1st year PhD student at the School of Chemical Engineering and Analytical Sciences. After graduating from my Bachelor degree, also in Chemical Engineering, from my home county, Mexico, I successfully applied for a scholarship from my Government to come and study here in Manchester. I started on a Masters degree called an MPhil. This is sometimes a PhD preliminary year where you research a specific field before starting a full PhD in the same research area and is the path I took to becoming a PhD student.


My PhD focuses on applying new materials, such as graphene and reduced graphene oxide, into fuel cells. Fuel cells are devices capable of generating electricity through a chemical reaction, making my speciality electrochemistry.

In Depth

Currently most of the devices we use in our daily lives require a power supply, from the kettle we use for our morning coffee to the bus we use to get to work or school. This demand of energy is increasing every single day and is one of the most worrying problems humanity is facing.

So far, the solution to this problem hasn’t been found, but, most people believe that the solution lies in the use of multiple types of alternative energy sources. One of those alternative sources are fuel cells, more specifically, PEM fuel cells (proton exchange membrane fuel cells). These are small devices that can generate electricity through a reaction that takes place in the heart of the fuel cell, the Membrane Electrode Assembly. This is comprised of two electrodes stuck together with only a thin membrane separating them. The chemical reactions split a fuel - such as hydrogen, methanol or formic acid - into protons and electrons, which releases the chemical energy trapped inside that goes on to form electricity and water, thus generating power at a high efficiency with a low impact to the environment.

They are similar to batteries in the sense that both are electrochemical devices. However, in the case of batteries, they contain a set amount of power storage within them, whilst fuel cells produce a constant flow of energy as "fuel" flows through it.


So, why are we not already using them? Well unfortunately, fuel cells face different kinds of problems that need to be solved before they become as commonly used as batteries. In the case of hydrogen or formic acid, storage and handling of the fuel is a major safety issue, whilst low power production is an issue facing methanol fuel cells. Another problem this technology is facing is the use of expensive materials as a catalyst (a material used to kick start the chemical reaction), without which the fuel cells would not function. This problem is being tackled by finding alternative materials to try to improve the performance of the device. I’m looking specifically at using graphene in a number of different varieties.

So, what’s Graphene? Graphene is a relatively newly discovered two-dimension material that is known to possess multiple qualities, such as being highly conductive, highly resistant, ultra-light, transparent and is the thinnest material possible that could improve our daily life devices, including fuel cells. The objective of my PhD is to explore the use of this material in formic acid fuel cells to improve its power generation and efficiency, making it an excellent alternative source of energy.

Going Further

If you'd like to know more about fuel cells, visit this page:

http://americanhistory.si.edu/fuelcells/basics.htm  

If you want to know what kind of research is being carried out into fuel cells, visit:

https://energy.gov/eere/hydrogen-fuel-cells-blog  

If you're keen to know more about Graphene, visit the University of Manchester, the home of Graphene: http://www.graphene.manchester.ac.uk/  

Or if you want to know what you can do as a chemical engineer and how to become one, visit:

http://www.whynotchemeng.com/